Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions.

Identifieur interne : 000209 ( Main/Exploration ); précédent : 000208; suivant : 000210

The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions.

Auteurs : Youjun Zhang [Allemagne] ; Corné Swart [Allemagne] ; Saleh Alseekh [Allemagne] ; Federico Scossa [Allemagne, Italie] ; Liang Jiang [Allemagne] ; Toshihiro Obata [Allemagne] ; Alexander Graf [Allemagne] ; Alisdair R. Fernie [Allemagne]

Source :

RBID : pubmed:29794018

Descripteurs français

English descriptors

Abstract

The plant tricarboxylic acid (TCA) cycle provides essential precursors for respiration, amino acid biosynthesis, and general nitrogen metabolism; moreover, it is closely involved in biotic stress responses and cellular redox homeostasis. To further understand the in vivo function of the TCA cycle enzymes, we combined affinity purification with proteomics to generate a comprehensive extra-pathway protein-protein interaction network of the plant TCA cycle. We identified 125 extra-pathway interactions in Arabidopsis (Arabidopsis thaliana) mostly related to the mitochondrial electron transport complex/ATP synthesis and amino acid metabolism but also to proteins associated with redox stress. We chose three high-scoring and two low-scoring interactions for complementary bimolecular fluorescence complementation and yeast two-hybrid assays, which highlighted the reliability of our approach, supported the intimate involvement of TCA cycle enzymes within many biological processes, and reflected metabolic changes reported previously for the corresponding mutant lines. To analyze the function of a subset of these interactions, we selected two mutants of mitochondrial glutaredoxin S15 and Amidase, which have not yet been analyzed with respect to their TCA cycle function, and performed metabolite profiling and flux analysis. Consistent with their interactions identified in this study, TCA cycle metabolites and the relative TCA flux of the two mutants were altered significantly.

DOI: 10.1104/pp.17.01687
PubMed: 29794018
PubMed Central: PMC6052981


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions.</title>
<author>
<name sortKey="Zhang, Youjun" sort="Zhang, Youjun" uniqKey="Zhang Y" first="Youjun" last="Zhang">Youjun Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Swart, Corne" sort="Swart, Corne" uniqKey="Swart C" first="Corné" last="Swart">Corné Swart</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alseekh, Saleh" sort="Alseekh, Saleh" uniqKey="Alseekh S" first="Saleh" last="Alseekh">Saleh Alseekh</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scossa, Federico" sort="Scossa, Federico" uniqKey="Scossa F" first="Federico" last="Scossa">Federico Scossa</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 00134 Rome, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 00134 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Liang" sort="Jiang, Liang" uniqKey="Jiang L" first="Liang" last="Jiang">Liang Jiang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Obata, Toshihiro" sort="Obata, Toshihiro" uniqKey="Obata T" first="Toshihiro" last="Obata">Toshihiro Obata</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Graf, Alexander" sort="Graf, Alexander" uniqKey="Graf A" first="Alexander" last="Graf">Alexander Graf</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany fernie@mpimp-golm.mpg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29794018</idno>
<idno type="pmid">29794018</idno>
<idno type="doi">10.1104/pp.17.01687</idno>
<idno type="pmc">PMC6052981</idno>
<idno type="wicri:Area/Main/Corpus">000238</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000238</idno>
<idno type="wicri:Area/Main/Curation">000238</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000238</idno>
<idno type="wicri:Area/Main/Exploration">000238</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions.</title>
<author>
<name sortKey="Zhang, Youjun" sort="Zhang, Youjun" uniqKey="Zhang Y" first="Youjun" last="Zhang">Youjun Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Swart, Corne" sort="Swart, Corne" uniqKey="Swart C" first="Corné" last="Swart">Corné Swart</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alseekh, Saleh" sort="Alseekh, Saleh" uniqKey="Alseekh S" first="Saleh" last="Alseekh">Saleh Alseekh</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scossa, Federico" sort="Scossa, Federico" uniqKey="Scossa F" first="Federico" last="Scossa">Federico Scossa</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 00134 Rome, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 00134 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Liang" sort="Jiang, Liang" uniqKey="Jiang L" first="Liang" last="Jiang">Liang Jiang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Obata, Toshihiro" sort="Obata, Toshihiro" uniqKey="Obata T" first="Toshihiro" last="Obata">Toshihiro Obata</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Graf, Alexander" sort="Graf, Alexander" uniqKey="Graf A" first="Alexander" last="Graf">Alexander Graf</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany fernie@mpimp-golm.mpg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amidohydrolases (genetics)</term>
<term>Amidohydrolases (metabolism)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Citric Acid Cycle (physiology)</term>
<term>Enzymes (genetics)</term>
<term>Enzymes (metabolism)</term>
<term>Fluorescence (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Protein Interaction Maps (MeSH)</term>
<term>Two-Hybrid System Techniques (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amidohydrolases (génétique)</term>
<term>Amidohydrolases (métabolisme)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Cartes d'interactions protéiques (MeSH)</term>
<term>Cycle citrique (physiologie)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Enzymes (génétique)</term>
<term>Enzymes (métabolisme)</term>
<term>Fluorescence (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Techniques de double hybride (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amidohydrolases</term>
<term>Arabidopsis Proteins</term>
<term>Enzymes</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amidohydrolases</term>
<term>Arabidopsis Proteins</term>
<term>Carbon Dioxide</term>
<term>Enzymes</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amidohydrolases</term>
<term>Arabidopsis</term>
<term>Enzymes</term>
<term>Glutarédoxines</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amidohydrolases</term>
<term>Arabidopsis</term>
<term>Dioxyde de carbone</term>
<term>Enzymes</term>
<term>Glutarédoxines</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cycle citrique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Citric Acid Cycle</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fluorescence</term>
<term>Protein Interaction Maps</term>
<term>Two-Hybrid System Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartes d'interactions protéiques</term>
<term>Fluorescence</term>
<term>Techniques de double hybride</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The plant tricarboxylic acid (TCA) cycle provides essential precursors for respiration, amino acid biosynthesis, and general nitrogen metabolism; moreover, it is closely involved in biotic stress responses and cellular redox homeostasis. To further understand the in vivo function of the TCA cycle enzymes, we combined affinity purification with proteomics to generate a comprehensive extra-pathway protein-protein interaction network of the plant TCA cycle. We identified 125 extra-pathway interactions in Arabidopsis (
<i>Arabidopsis thaliana</i>
) mostly related to the mitochondrial electron transport complex/ATP synthesis and amino acid metabolism but also to proteins associated with redox stress. We chose three high-scoring and two low-scoring interactions for complementary bimolecular fluorescence complementation and yeast two-hybrid assays, which highlighted the reliability of our approach, supported the intimate involvement of TCA cycle enzymes within many biological processes, and reflected metabolic changes reported previously for the corresponding mutant lines. To analyze the function of a subset of these interactions, we selected two mutants of mitochondrial glutaredoxin S15 and Amidase, which have not yet been analyzed with respect to their TCA cycle function, and performed metabolite profiling and flux analysis. Consistent with their interactions identified in this study, TCA cycle metabolites and the relative TCA flux of the two mutants were altered significantly.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29794018</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>177</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions.</ArticleTitle>
<Pagination>
<MedlinePgn>966-979</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.17.01687</ELocationID>
<Abstract>
<AbstractText>The plant tricarboxylic acid (TCA) cycle provides essential precursors for respiration, amino acid biosynthesis, and general nitrogen metabolism; moreover, it is closely involved in biotic stress responses and cellular redox homeostasis. To further understand the in vivo function of the TCA cycle enzymes, we combined affinity purification with proteomics to generate a comprehensive extra-pathway protein-protein interaction network of the plant TCA cycle. We identified 125 extra-pathway interactions in Arabidopsis (
<i>Arabidopsis thaliana</i>
) mostly related to the mitochondrial electron transport complex/ATP synthesis and amino acid metabolism but also to proteins associated with redox stress. We chose three high-scoring and two low-scoring interactions for complementary bimolecular fluorescence complementation and yeast two-hybrid assays, which highlighted the reliability of our approach, supported the intimate involvement of TCA cycle enzymes within many biological processes, and reflected metabolic changes reported previously for the corresponding mutant lines. To analyze the function of a subset of these interactions, we selected two mutants of mitochondrial glutaredoxin S15 and Amidase, which have not yet been analyzed with respect to their TCA cycle function, and performed metabolite profiling and flux analysis. Consistent with their interactions identified in this study, TCA cycle metabolites and the relative TCA flux of the two mutants were altered significantly.</AbstractText>
<CopyrightInformation>© 2018 American Society of Plant Biologists. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Youjun</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0003-1052-0256</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Swart</LastName>
<ForeName>Corné</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alseekh</LastName>
<ForeName>Saleh</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-2067-5235</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scossa</LastName>
<ForeName>Federico</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0002-6233-1679</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 00134 Rome, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Obata</LastName>
<ForeName>Toshihiro</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0001-8931-7722</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graf</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-6696-5206</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernie</LastName>
<ForeName>Alisdair R</ForeName>
<Initials>AR</Initials>
<Identifier Source="ORCID">0000-0001-9000-335X</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany fernie@mpimp-golm.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.-</RegistryNumber>
<NameOfSubstance UI="D000581">Amidohydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.4</RegistryNumber>
<NameOfSubstance UI="C019665">amidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000581" MajorTopicYN="N">Amidohydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002952" MajorTopicYN="N">Citric Acid Cycle</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="N">Protein Interaction Maps</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020798" MajorTopicYN="N">Two-Hybrid System Techniques</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29794018</ArticleId>
<ArticleId IdType="pii">pp.17.01687</ArticleId>
<ArticleId IdType="doi">10.1104/pp.17.01687</ArticleId>
<ArticleId IdType="pmc">PMC6052981</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2017 Aug 4;16(8):3068-3082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28726418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Jul 25;259(14):8748-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6378901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:85-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15725058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15665243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3723-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1987;56:89-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2441660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2010;655:359-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20734273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1981 Jul;117(3):527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7285903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D1064-D1074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;860:255-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22351182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2009 Nov 24;5:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19930690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;812:39-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22218853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2539-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteome Sci. 2010 Feb 15;8:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20205919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):1523-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):1051-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25646482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Aug;15(8):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Aug;168(4):1537-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26134164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2014 Mar;99:36-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24461228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Jul;24(3):218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11403571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Aug;10(8):730-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Mar;89(6):1079-1092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27943495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2140-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Mar;170(3):1284-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26672074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2011 Jan;13(1):18-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20933603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jul;1857(7):991-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26820434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 1990 Oct-Dec;3(5-6):215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2096888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Feb;27(2):306-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25649436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Jun;8(3):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Mar;185(4):988-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20070539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2017 Apr 4;25(4):765-776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28380371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Sep;1807(9):1185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21679683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:23-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25746448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Nov 25;36(47):14271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9400365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2006 Dec;3(12):1013-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17060908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2014 Nov;9(11):2539-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25275790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 18;354(6314):890-893</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 May 28;41(21):6789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12022883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jul 17;349(6245):309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26113639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):359-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2012 Sep;Chapter 8:Unit8.15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22948729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1973 Sep;70(9):2534-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4354855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Jun;16(3):335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23462640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1546-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:153-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26735064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 May 16;8:15212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28508886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Apr 15;21(8):1635-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Jan 1;59(1):e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29216398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;754:195-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21720954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(1):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Jan;35(1):1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1851-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25537779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11880-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15284438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Sep 29;537(7622):644-648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27654913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Dec 25;259(24):15040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6439716</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Italie</li>
</country>
<region>
<li>Brandebourg</li>
<li>Latium</li>
</region>
<settlement>
<li>Potsdam</li>
<li>Rome</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Brandebourg">
<name sortKey="Zhang, Youjun" sort="Zhang, Youjun" uniqKey="Zhang Y" first="Youjun" last="Zhang">Youjun Zhang</name>
</region>
<name sortKey="Alseekh, Saleh" sort="Alseekh, Saleh" uniqKey="Alseekh S" first="Saleh" last="Alseekh">Saleh Alseekh</name>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
<name sortKey="Graf, Alexander" sort="Graf, Alexander" uniqKey="Graf A" first="Alexander" last="Graf">Alexander Graf</name>
<name sortKey="Jiang, Liang" sort="Jiang, Liang" uniqKey="Jiang L" first="Liang" last="Jiang">Liang Jiang</name>
<name sortKey="Obata, Toshihiro" sort="Obata, Toshihiro" uniqKey="Obata T" first="Toshihiro" last="Obata">Toshihiro Obata</name>
<name sortKey="Scossa, Federico" sort="Scossa, Federico" uniqKey="Scossa F" first="Federico" last="Scossa">Federico Scossa</name>
<name sortKey="Swart, Corne" sort="Swart, Corne" uniqKey="Swart C" first="Corné" last="Swart">Corné Swart</name>
</country>
<country name="Italie">
<region name="Latium">
<name sortKey="Scossa, Federico" sort="Scossa, Federico" uniqKey="Scossa F" first="Federico" last="Scossa">Federico Scossa</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000209 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000209 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29794018
   |texte=   The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29794018" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020